ERRATA for the Solutions Manual

Chapter 1.

Exercise 14. There should be "... If $u(x)=-1 / x^{\alpha}$ for $\alpha>0$, then $u^{-1}(y)=(-1 / y)^{1 / \alpha}$, and $c(X)=\left(E\left\{X^{-\alpha}\right\}\right)^{-1 / \alpha}$...."

Chapter 2.

Exercise 10. There should be
"(a) ... The probability that an injury will result in a claim is

$$
P(\xi>6)=0.4 \cdot \frac{1}{1+(6 / 5)^{3}}+0.6 \cdot \frac{1}{1+(6 / 3)^{2}} \approx 0.267
$$

(b) The probability that a particular contract will result in a claim is $q P(\xi>6) \approx 0.0134$."

Chapter 4.

Exercise 21. ... Taking into account a deductible of 50 , we should find $P(S>250) \approx$ $1-\Gamma(250,0.12,23.53) \approx 0.097$ (instead of 0.4345$)$.

Exercise 22a. $E\{S\}=\left(2 \cdot \frac{1}{3}+3 \cdot \frac{1}{2}+4 \cdot \frac{1}{6}\right) \cdot 150=425 ; \operatorname{Var}\{S\}=\left(2^{2} \cdot \frac{1}{3}+3^{3} \cdot \frac{1}{2}+4^{2} \cdot \frac{1}{6}\right)$. $150=1275$.

Exercise 34b. $E\{S\}=\frac{35000}{3}$ (instead of $\frac{3500}{3}$).

Chapter 5.

Exercise 1(b). There should be "... $P\left(N_{2}=2 \mid N_{1.5}=2, N_{1}=2\right)=0 \ldots$ " and "... $P\left(N_{2}=2 \mid N_{1.5}=2\right)>0 \ldots "$.

Exercise 2. The words "... should be much larger ..." should be replaced by "... should be smaller... ".

Exercise 9d. ... The question concerns the standard deviation equal to $\sqrt{0.16}=0.4$.
Exercise 12c. $\quad \ldots E\left\{T_{n+m} \mid N_{t}=n\right\}=t+E\left\{T_{m}\right\}=t+\frac{m}{\lambda} . \quad \ldots$
Exercise 44. In the representation for $E\left\{K \mid X_{0}=0, X_{1}=1\right\}$ the term " $1+$ " has been missed, so equation (M-5.1) is wrong. To make it more convenient, we repeat the whole solution.

Let K be the number of time moments when the process X_{t} under consideration is in the state

0 . Set $m_{0}=E\left\{K \mid X_{0}=0\right\}$, and $m_{1}=E\left\{K \mid X_{0}=1\right\}$. We may write

$$
\begin{aligned}
m_{0} & =E\left\{K \mid X_{0}=0, X_{1}=0\right\} P\left(X_{1}=0 \mid X_{0}=0\right) \\
+E\left\{K \mid X_{0}\right. & \left.=0, X_{1}=1\right\} P\left(X_{1}=1 \mid X_{0}=0\right)+E\left\{K \mid X_{0}=0, X_{1}=2\right\} P\left(X_{1}=2 \mid X_{0}=0\right) \\
+E\left\{K \mid X_{0}\right. & \left.=0, X_{1}=3\right\} P\left(X_{1}=3 \mid X_{0}=0\right)
\end{aligned}
$$

Since the process is Markov,

$$
E\left\{K \mid X_{0}=0, X_{1}=0\right\}=1+E\left\{K \mid X_{1}=0\right\}=1+m_{0}
$$

$$
E\left\{K \mid X_{0}=0, X_{1}=1\right\}=E\left\{K \mid X_{1}=1\right\}=1=1+m_{1}
$$

$$
E\left\{K \mid X_{0}=0, X_{1}=2\right\}=1, E\left\{K \mid X_{0}=0, X_{1}=3\right\}=1
$$

Then,

$$
m_{0}=\left(1+m_{0}\right) \cdot 0.9+\left(1+m_{1}\right) \cdot 0.05+0.01+0.04
$$

and

$$
\begin{equation*}
2 m_{0}=20+m_{1} . \tag{5.1}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
m_{1} & =E\left\{K \mid X_{0}=1, X_{1}=0\right\} P\left(X_{1}=0 \mid X_{0}=1\right) \\
+E\left\{K \mid X_{0}\right. & \left.=1, X_{1}=1\right\} P\left(X_{1}=1 \mid X_{0}=1\right)+E\left\{K \mid X_{0}=1, X_{1}=2\right\} P\left(X_{1}=2 \mid X_{0}=1\right) \\
+E\left\{K \mid X_{0}\right. & \left.=1, X_{1}=3\right\} P\left(X_{1}=3 \mid X_{0}=1\right)=0.1 m_{0}+0.8 m_{1}+0+0
\end{aligned}
$$

and $0.2 m_{1}=0.1 m_{0}$, or

$$
m_{0}=2 m_{1}
$$

Together with (M-5.1), it gives $m_{1}=\frac{20}{3}$, and $m_{0}=\frac{40}{3}$.
Next,

$$
\begin{aligned}
E\{K\} & =E\left\{K \mid X_{0}=0\right\} P\left(X_{0}=0\right)+E\left\{K \mid X_{0}=1\right\} P\left(X_{0}=1\right)+0+0 \\
& =m_{0} \cdot 0.94+m_{1} \cdot 0.06=12.8
\end{aligned}
$$

Chapter 10.

Exercise 28. There is a mistake at the very end of the solution: the numerical value of v should correspond to the daily discount (rather than to the annual). So, $v=(0.96)^{1 / 365} \approx 0.99989$. In this case, $E\{Y\} \approx 8 /(1-0.9 \cdot 0.99989) \approx 79.9137, E\left\{v^{\Psi}\right\} \approx 0.9989, E\left\{v^{2 \Psi}\right\} \approx 0.9977$, and in accordance with (M-10.9), $\operatorname{Var}\{Y\} \approx 5748.9$.

Chapter 11.

Exercise 21. \ddot{a}_{x} in 1.2 p. 115 should be replaced by \bar{a}_{x}.

